

Ecosystem

• All the organisms in an area that interact with each other and with their environment of energy and matter.

- The energy passes through the ecosystem from species to species.
 - · Herbivores eat plants
 - Carnivores eat herbivores
- A food chain shows a single pathway for the passing of energy.
 - The arrows represent energy being transferred.

Credit: Grass - kaboompics.com; Rabbit - Denniz Futalan; Fox - Funny Foxy Pride (Pexels)

- A food web is a network of food chains by which energy and nutrients are passed on from one living organism to another.
- It shows multiple pathways.

• Consumers (heterotrophs) are categorized according to what they eat.

Herbivores

- · eat only plants
- Primary consumers are all herbivores.

Zebra – Pixabay (Pexels) Hyena – Frans Van Heerden (Pexels) Lion – Gareth Davies (Pexels)

Carnivores

- Eat only meat
- Most secondary consumers are carnivores.
- Tertiary consumers eat secondary consumers.

Images: Grizzly Bear – jdaypix (Pixabay); Raccoon – David Selbert (Pexels); Vulture – Harry Lette (Pexels); Crab – David Mark (Pixabay)

- Carbon is the fourth most abundant element in the universe and is essential for life on Earth.
- Carbon appears in many forms

Solid

 limestone, wood, diamonds, coal, plant and animal tissue

Brown deer in forest – Future Kilid (Pexels) Coal – Pixabay (Pexels) Diamond Herkimer – Mariusz Kasio (<u>CC-BY-NC-ND 2</u>

Liquid

• oil, gasoline

• Gas

• carbon dioxide, methane (natural gas), propane

- The carbon cycle is a system that transfers carbon from one part of the environment (reservoir) to another.
- The carbon cycle consists of two cycles:
 - Biological Carbon Cycle
 - Geochemical Carbon Cycle

Biological Carbon Cycle

• The biological carbon cycle deals with rapid carbon exchange among living organisms.

Photosynthesis

i23auto (Pixat

- · Occurs in autotrophs (plants)
- Uses carbon dioxide to produce oxygen and glucose (carbohydrates)
 - $6\overline{\text{CO}_2}$ +6 H₂O + energy $\rightarrow 6\overline{\text{O}_2}$ + $\overline{\text{C}_6\text{H}_{12}\text{O}_6}$

Cellular Respiration

- Occurs in all living cells
- Uses oxygen and glucose (carbohydrates) to produce carbon dioxide
 - $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + energy$

Consumption

• Consumers get the glucose necessary for cellular respiration by ingesting plants and/or animals.

Decomposition

- Carbon enters the soil as dead plant matter.
- It is broken down by microorganisms during decay.

Rotting wood with fungi – Jake Slagel (<u>CC BY-NC 2.0</u>) White peach: Brown rot of fruit – Scot Nelson (public doma

Geochemical Carbon Cycle

• The geochemical carbon cycle deals with the long-term cycling of carbon through geologic processes.

Precipitation

• Carbonic acid forms when water (rain) reacts with the carbon dioxide in the atmosphere.

- The weakly acidic rain reacts with minerals on the earth's surface dissolving them.
- The dissolved minerals are carried by rivers and streams to the ocean where they precipitate out.

Rock - Tomas Anunziata (Pexels

- Marine animal shells contain carbon (calcium carbonate).
- Shells settle to the ocean floor when the animals dies where they eventually form limestone.

Seashells – Skitterphoto (Pexels) Crab - Alexsandro Rosa de Mello (Pexels)

Burial

- Carbon bearing sediment is continually being deposited on the sea floor forming new rock.
- Seafloor spreading pushes the seafloor under the continents.

subduction

A Fish and the Floor - Meridith P. (CC BY-ND 2.0)

Volcanoes

• Volcanoes, hot springs, and tectonic uplift all release carbon dioxide back into the atmosphere.

Diffusion

• Carbon dioxide is absorbed and released where the ocean's surface meets the air.

Combustion

• The burning of fossil fuels and any organic material releases carbon dioxide into the atmosphere.

• The atmosphere contains about 78% nitrogen but neither plant nor animal can use this nitrogen directly.

- Nitrogen must be converted to more chemically available forms for plants and animals to use.
 - ammonia (NH₃), ammonium (NH₄), nitrites (NO₂), and nitrates (NO₃)
- Nitrogen fixation is a process where nitrogen molecules (N_2) in the air break apart and combine with other atoms for form ammonium (NH_4) .
- Plant nutrients are the result of nitrogen fixation.

- Autotrophs (plants) must have their nitrogen "fixed."
 - Nitrogen gets "fixed" when it combines with oxygen or hydrogen.
- Nitrogen fixation is a chemical process where nitrogen molecules (N_2) in the air break apart and combine with other atoms for form ammonium (NH_4) in soil or aquatic systems.
- Most nitrogen is fixed by bacteria, but it can also be fixed by lightning and artificially through industrial processes.

Atmospheric Fixation

 Energy from lightning causes nitrogen and oxygen molecules in the atmosphere to ionize and react with rain to form Nitrous acid (HNO₂).

sethink (Pixabay)

• The nitrous acids seeps into the ground and forms nitrates (NO₃).

Industrial Fixation

- A special process is used to combine nitrogen gas (N₂) with hydrogen (H₂) to form ammonia (NH₃).
- This is usually processed further to make
 ammonium nitrate

 (NH_4NO_3) .

Bags of fertilizer – Sharon Dowdy (UGA CAES/Extensio (CC BY-NC 2.0)

Biological Fixation

- Free living bacteria that live in the soil or water and combine nitrogen with hydrogen.
- Produce ammonium (NH₄).
- Free living bacteria fix about 30% of the nitrogen.

• Bacteria that live in a symbiotic relationship with plants.

Legumes

- soybeans, alfalfa, beans, peas, clover, peanuts
- Some non-leguminous
- alder, bayberry

Nodules

Alfalfa – Patrick J. Alexander, hosted by the USDA-NRCS PLANTS Database Gray Alder – Joe F. Duft, hosted by the USDA-NRCS PLANTS Database / USDA NRCS. 1992. Western wetland flora: Field office guide to plant species. West Region, Sacramento

- The bacteria live in root nodules and produce ammonia in exchange for carbohydrates and a protected home.
- These bacteria fix about 70% of the nitrogen.

Bacteria nodules of roots. (Sandip - Adobe Stock)

Assimilation

- Plants absorb the ammonia or nitrates and use them to produce the organic compounds needed.
 - amino acids, chlorophyll, and nucleic acid

,				
	NH ₃	► 0 ₩ RI	H [.] F	ксоон
Shoot	κ+	7	V	acoule K⁺ RCOO
		R OI	COC →F	RCOOH Tomato Castor Soybean
Sta	天 🎽 ticd (CC	BY	SA	4 0)

 Consumers eat plants (or other consumers) and absorb the nitrogen compounds.

Ammonification

- Decomposers break down the molecules in excretions and dead organisms into ammonia.
- The ammonia is absorbed and stored in the soil.

Denitrification

- **Denitrification** converts nitrates (NO₃) in the soil to nitrogen (N₂).
- Denitrifying bacteria live deep in swampy sediments where oxygen (O₂) is not easily accessible.

• These bacteria take oxygen (O₂) from nitrates (NO₃) leaving nitrogen gas (N₂).

Louisiana Swamp – Mike McBride (CC BY-NC 2.0

• The nitrogen returns to the atmosphere to begin the cycle again.

Effects of Excess Nitrogen

- Excess nitrogen in the soil can lead to
 - · Excess foliage growth
 - The plant may not produce flowers or fruit.
 - Burning and salt concentration
 - Leaves take on a burnt look from dehydration.

- Stunted root growth
 - Roots may not grow properly
- Groundwater pollution
 - The excess nitrogen is carried to ground water, rivers, and lakes due to runoff.

Image: David Libb

Concentration of substance

- Biomagnification can only occur if the compound bioaccumulates.
 - The compound must be **fat soluble** as opposed to water soluble.
- Compounds that are stay in the environment for a long time without breaking down (**long-lived**) have a greater chance of being ingested by organisms.
- Compounds that cannot be contained to one location can be spread through the environment (**mobile**) increase the change of ingestion.

- Just because a compound bioaccumulates and biomagnifies does not make it harmful.
- Compounds must be hazardous to the organism (**biologically active**) to be a problem in the environment.

DDT

(dichloro, diphenyl trichloroethane)

- Insecticide used extensively in the western world to eliminate the mosquito that carries the malaria parasite
- Banned from use in 1972 due to several false claims including
 - Causes eggshell thinning
 - Causes liver and breast cancer
- Still carries the myth that it is hazardous

100 Things You Should Know About DDT (https://junkscience.com/1999/07/100things-you-should-know-about-ddt/)

PCBs (polychlorinated biphenyls)

• Used as coolant in transformers, sealing and caulking compounds, inks and paint additives.

• Overexposure can cause a severe form of acne (chloracne), swelling of the upper eyelids, discoloring of the nails and skin, numbness in the arms and/or legs, weakness, muscle spasms, chronic bronchitis, and problems related to the nervous system.

PAH (polycyclic aromatic hydrocarbons) • Primarily found in natural sources such as bitumen (a sticky, black, highly viscous liquid or semi-solid form of petroleum asphalt)

Dead Sea shore - Daniel Tzvi (public domain

 PAHs have been linked to skin, lung, bladder, liver, and stomach cancers in well-established animal model studies.

Natural formed Bitumen co

Heavy Metals

- A group of metals and metalloids that have relatively high density
 - Pb, As, Hg, Cd, Zn, Cu, Fe, Cr, Ni, Pd, Pt, ...
- Natural and anthropogenic sources
- · Wide variety of commercial uses
 - Lead: storage batteries, ammunition, radiation shielding
 - Copper: wiring, water pipes
 - Iron: main component of steel
 - Chromium: component of stainless steel
- Many are nutritionally essential for humans
 - Copper: red blood cell production, neuron signaling, immunity
 - Chromium: maintain normal blood sugar levels
 - Iron: helps make hemoglobin, making amino acids
 - Magnesium: builds bones and teeth
 - Zinc: helps blood clot, bolsters immune system
- Overexposure can affect the nervous system

Cyanide

- Naturally found in small amounts in some foods
 - almonds, soy, spinach, apple seeds, cherry pits
- Naturally found in dangerous amounts in peach and apricot pits
- Uses include
 - making paper, textiles, plastics, electroplating, metal cleaning, removing gold from its ore, exterminating pests and vermin

 Survivors of serious cyanide poisoning may develop heart, brain and nerve damage

Selenium

- Trace element naturally present in many foods
 - Brazil nuts, yellowfin tuna, halibut, shrimp, ham, turkey, chicken, beef, eggs, spinach
- · Nutritionally essential for humans
 - plays critical roles in reproduction, thyroid hormone metabolism, DNA synthesis, and protection from oxidative damage and infection

• Too much selenium can result in hair and nail loss, nausea, diarrhea, skin rashes, mottled teeth, fatigue, irritability, and nervous system abnormalities.

Population

- Populations are characterized by their **population size** (total number of individuals) and their **population density** (number of individuals per unit area).
 - A population may have a large number of individuals that are distributed densely, or sparsely.
 - There are also populations with small numbers of individuals that may be dense or very sparsely distributed in a local area.
- Population **size** can affect potential for adaptation because it affects the amount of genetic variation present in the population.
- The size of a population will increase due to births and immigration.
- The size of a population will decrease due to deaths and emigration.

- **Density** can have effects on interactions within a population such as competition for food and the ability of individuals to find a mate.
 - Individuals in a low-density population are thinly dispersed; hence, they may have more difficulty finding a mate compared to individuals in a higher-density population.
 - High-density populations often result in increased competition for food.
 - Smaller organisms tend to be more densely distributed than larger organisms.

Species Distribution

- A species distribution pattern is the distribution of individuals within a habitat at a particular point in time.
- Individuals within a population can be distributed at random, in groups, or equally spaced apart (more or less).

Plants such as (a) dandelions with wind-dispersed seeds tend to be randomly distributed. Animals such as (b) elephants that travel in groups exhibit a clumped distribution. Territorial birds such as (c) penguins tend to have a uniform distribution.

s/19-1-population-demographics-and-dy

Credit a: modification of work by Rosendahl Credit b: modification of work by Rebecca Wood Credit c: modification of work by Ben Tubby Concepts of Biology. OpenStax. (CC BY 4.0) https://openstax.org/books/concepts-biology/page

Population Growth

- Population growth goes through three phases:
 - Exponential
 - Quick growing (very few limiting factors)
 - Transitional
 - Slowing of growth rate as the population approaches the carrying capacity
 - Population plateau
 - The population remains stable (small variations over time)

- In real life, the plateau is not constant.
- The population will increase or decrease from one year to the next.
- The average value over several years is the carrying capacity.

Carrying Capacity

- The number of individuals of a species capable of surviving in an environment over long periods of time.
 - This number depends on numerous limiting factors in the ecosystem.

Limiting Factor

- Something which restricts population growth in some way.
 - The amount of space available for building nests would limit the number of birds who would live in an ecosystem; therefore, space can be a limiting factor.
- These factors can be biotic or abiotic.
- Some of the factors depend on the total size of the population density.

Density Dependent Factors

- The effect on a population is determined by the total size of the population.
 - Predation
 - The more predators there are, the more prey are eaten.
 - Disease
 - An illness will spread faster through a larger, denser population impacting more individuals.

- · Resource availability
 - The more organisms there are, the less resources (food, water, shelter) there are to go around.
- Aggression
 - Too many dominant males (or females) can result in fights to the death.
- Stress
 - Overpopulation can lead to stress in females causing neglect of younger organisms.

- Competition
 - Organisms will compete for the limited resources available.
 - When populations of the same species compete, it is called **intraspecific competition**.
 - When populations of different species compete, it is called **interspecific competition**.

Density Independent Factors

- Limit the size of a population, but the effect is **not** dependent on the size of the population.
 - Natural disasters
 - Fire
 - Earthquakes
 - Volcanic eruptions
 - Drought
 - Flood
 - Cold winter

Biotic and Abiotic Factors

- Limiting factors can also be split into biotic and abiotic factors.
 - Biotic factors involve interactions between organisms such as predation, competition, parasitism and herbivory
 - Abiotic factors are interactions with the environment and include temperature, water availability, oxygen, light, food and nutrients.